Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding

نویسندگان

  • Megumi Kawasaki
  • Byungmin Ahn
  • HanJoo Lee
  • Alexander P. Zhilyaev
  • Terence G. Langdon
چکیده

Disks of commercial Al-1050 and ZK60A alloys were stacked together and then processed by conventional high-pressure torsion (HPT) through 1 and 5 turns at room temperature to investigate the synthesis of an Al–Mg alloy system. Measurements of microhardness and observations of the microstructures and local compositions after processing through 5 turns revealed the formation of an ultrafine multi-layered structure in the central region of the disk but with an intermetallic b-Al3Mg2 phase in the form of nano-layers in the nanostructured Al matrix near the edge of the disk. The activation energy for diffusion bonding of the Al and Mg phases was estimated and it is shown that this value is low and consistent with surface diffusion due to the very high density of vacancy-type defects introduced by HPT processing. The results demonstrate a significant potential for making use of HPT processing in the preparation of new alloy systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-Mechanical Response of an Al-Mg Hybrid System Synthesized by High-Pressure Torsion

This paper summarizes recent efforts to evaluate the potential for the formation of a metal matrix nanocomposite (MMNC) by processing two commercial bulk metals of aluminum and magnesium alloy through high-pressure torsion (HPT) at room temperature. After significant evolutions in microstructures, successful fabrication of an Al-Mg hybrid system was demonstrated by observing unique microstructu...

متن کامل

Fabrication of hybrid metal systems through the application of high-pressure torsion

This presentation demonstrates a simple and very rapid synthesis of metal matrix nanocomposites (MMNCs) in Al-based hybrid systems which are achieved by processing stacked disks of two pure metals through the application of high-pressure torsion (HPT) at ambient temperature. These synthesized hybrid systems exhibit exceptionally high hardness through rapid deformation-induced diffusion and the ...

متن کامل

Effect of Temperature on Diffusion-Bonded Joint of AZ31 Magnesium and 7075 Aluminum Alloy

In this study, the effect of temperature on the diffusion welding of AZ31 magnesium alloy and 7075 aluminum was discussed. Diffusion welding temperature was the most important parameter since all mechanisms are sensitive to temperature in Diffusion welding method. Intrusive contacts between the two alloys at temperatures of 430, and 440 °C 450 and took 60 min. In all tests constant pressure and...

متن کامل

Effect of Temperature on Diffusion-Bonded Joint of AZ31 Magnesium and 7075 Aluminum Alloy

In this study, the effect of temperature on the diffusion welding of AZ31 magnesium alloy and 7075 aluminum was discussed. Diffusion welding temperature was the most important parameter since all mechanisms are sensitive to temperature in Diffusion welding method. Intrusive contacts between the two alloys at temperatures of 430, and 440 °C 450 and took 60 min. In all tests constant pressure and...

متن کامل

مقایسه خواص ریزساختاری و مکانیکی اتصالات نفوذی آلیاژهای5754، 6061 و 7039 آلومینیـوم به آلیاژ AZ31 منیـزیم

In this study, microstructure and mechanical properties of diffusion joints between 5754, 6061 and 7039 aluminum alloys and AZ31 magnesium alloy were investigated. Diffusion joints were done between the alloys at 440 °C, for duration of 60minutes, at 29 MPa pressure and under 1×10-4 torr vacuum. The interface of joints was studied using optical (OM) and scanning electron microscopy (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016